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Abstract. The current study aims to empirically examine the structure of 

mathematical imagination. A mathematical imagination test was administered to 

217 sixth-grade students from three urban and eight rural primary schools. 

Partial Least Squares structural equation modeling (PLS-SEM) was employed 

through Smart PLS in order to empirically examine the proposed model. The data 

analysis yields that the proposed model met all evaluation criteria of PLS-SEM 

and, hence, mathematical imagination can be described in terms of vividness, 

transformative abilities, and originality. Potential research directions are 

suggested, and theoretical, methodological, and practical implications are 

discussed. 
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Sunto. La presente ricerca ha l’obiettivo di esaminare empiricamente la struttura 

dell’immaginazione matematica. Un test di immaginazione matematica è stato 

somministrato a 217 studenti di grado sei di tre scuole primarie cittadine e di otto scuole 

primarie rurali. Per esaminare empiricamente il modello proposto è stata utilizzata la 

modellizzazione di equazioni strutturali basate sui minimi quadrati parziali (PLS-SEM) 

tramite Smart PLS. L'analisi dei dati ha dimostrato che il modello proposto soddisfa 

tutti i criteri di valutazione del PLS-SEM e, pertanto, l'immaginazione matematica può 

essere descritta in termini di vividezza, capacità di trasformazione e originalità. 

Vengono suggerite potenziali direzioni di ricerca e discusse le implicazioni teoriche, 

metodologiche e pratiche.  

Keywords: immaginazione matematica; vividezza; abilità trasformative; originalità. 

 

Resumen. La presente investigación tiene como objetivo examinar empíricamente la 
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estructura de la imaginación matemática. Se administró una prueba de imaginación 

matemática a 217 estudiantes de sexto grado de tres escuelas primarias de la ciudad y 

ocho escuelas primarias de zonas rurales. Para examinar empíricamente el modelo 

propuesto, se utilizó una modelización de ecuaciones estructurales basado en los 

mínimos cuadrados parciales (PLS-SEM) a través de Smart PLS. El análisis de los datos 

demostró que el modelo propuesto cumple con todos los criterios de evaluación del PLS-

SEM y, por tanto, la imaginación matemática puede describirse en términos de viveza, 

capacidad transformadora y originalidad. Se sugieren posibles direcciones de 

investigación y se discuten las implicaciones teóricas, metodológicas y prácticas. 

 

Parablas clave. imaginación matemática; viveza; habilidades transformadoras; 

originalidad. 

 

 

1. Introduction 
Imagination is delineated as a “vital element of mathematical thinking” (Pound 

& Lee, 2015, p. 5) and “the source of invention, novelty, and generativity” (Egan 

& Judson, 2016, p. 4). It “acts as the catalyst for all creative actions” (Eckhoff & 

Urbach, 2008, p. 180) and can be regarded as “the corner stone of creativity” 

(Christou, 2017, p. 14).  

In detail, imagination is characterized as “the driving force behind human 

thought” (Ho et al., 2013, p. 68). Einstein maintains that imagination is more 

important than knowledge (Ho et al., 2013). It is a core component of knowledge 

construction (Lev-Zamir & Leikin, 2011) and transforms knowledge into new 

ideas (Seelig, 2012). In addition, imagination stimulates problem solving 

(Lindstrand, 2010). Imagination helps children become creative thinkers and 

solve difficult problems in new and innovative ways (Eckhoff & Urbach, 2008). 

It enables learners to unlock and explore mathematical ideas (Jagals & van der 

Walt, 2018). Moreover, in the early school years, imagination has been linked to 

children’s more sophisticated cognitive abilities and improved ability to control 

their emotions (Smith & Mathur, 2009).  

Thus, several scholars point to the need to nurture imagination through 

education. According to Wu and Albanese (2013), society should examine and 

implement various approaches to allow education to return to imagination, which 

is the source and destination of knowledge. Imagination should be developed at 

any time and in all curriculum areas to enrich students’ learning more effectively 

(Egan & Judson, 2016). If imagination is promoted it is possible that we can all 

become more creative than we were as children (Eckhoff & Urbach, 2008). 

Further, engaging children in imaginative activities can improve their enjoyment 

and learning (Smith & Mathur, 2009). 

Notwithstanding the acknowledgment of the importance of imagination for 
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student mathematical learning, the research community has not shed light on 

imagination through empirical studies (Egan, 2015). It is notable that compared 

to research on creativity, literature on imagination is less advanced because of 

vague research questions (Ren et al., 2012). In addition, the definition of 

imagination remains vague (Ho et al., 2013), given that the field still lacks 

established theoretical frameworks on imagination (Abrahamson, 2006; 

Dziedziewicz & Karwowski, 2015; Egan, 1992). The present study seeks to 

empirically examine the structure of imagination in the domain of mathematics.  

 

1.1. Theoretical perspectives  
Imagination is a fuzzy concept (Egan, 1992; van Alphen, 2011), as it can refer to 

different things (Macknight, 2009). For instance, Seelig (2012) defines 

imagination as one’s ability to create something new. Lothane (2007) asserts that 

imagination is the basic ability to imagine, visualize, represent all that is 

experienced through either an image or a word. In addition, according to Pelaprat 

and Cole (2011), imagination is the process that makes it possible for an 

individual to emerge and, for the world to come into view. Ho et al. (2013) 

conceptualize imagination as the ability to construct images in the brain that are 

further visualised to generate ideas that can solve problems. 

The underpinning framework for conceptualizing imagination in the current 

study is the ‘Conjunctional Model of Creative Imaging Ability’ (Dziedziewicz & 

Karwowski, 2015). We purposively build on this theoretical model, because it is 

a broadly-acknowledged model of imagination derived from the area of 

psychology. Moreover, this model clearly specifies a set of constructs that can be 

easily adapted to the field of mathematics.  

Based on the ‘Conjunctional Model of Creative Imaging Ability’, 

imagination is composed of three constructs: vividness, transformative abilities, 

and originality (Dziedziewicz & Karwowski, 2015). In this model, vividness is 

defined as the ability to create lucid and expressive images characterized by high 

complexity and level of detail. Transformative abilities are the abilities to 

transform created imageries and finally, originality is the ability to produce 

creative unique imageries.  

In the present paper, we conceptualized and adapted all three constructs to 

the domain of mathematics. First, we conceive vividness as an aspect related to 

visualization. Visualization plays a key role not only in geometry learning 

(Presmeg, 1997), but in algebra as well, as it is described as a vehicle for effective 

problem solving in algebra (Yerushalmy et al.,  1999). Therefore, we link 

vividness to both spatial and algebraic images. Spatial images are mental 

constructs which represent spatial information (Presmeg, 1986), while vividness 

of spatial images is the mental manipulation of spatial objects in various ways 

(Presmeg, 1997). Drawing on Presmeg’s definition (1986) of spatial images, 
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algebraic images can be defined as mental constructs representing algebraic 

information. Vividness of algebraic images refers to solving algebraic insight 

problems (Weisberg, 1995), which require students to pass through the four 

stages of the creative process (preparation, incubation, illumination, and 

verification) (Wallas, 1926) to reach a solution. According to Vale and Barbosa 

(2018), “seeing is related to having creative insights or aha moments” (p. 26).  

In the stage of preparation, one is motivated to explore the problem situation 

and collect the necessary information to reach a solution (Yaftian, 2015). This 

phase involves intentional and conscious work (Liljedhal, 2013). When the solver 

is unable to reach a solution at a conscious level (Liljedhal, 2004, 2013), the 

incubation phase begins (Liljedhal, 2004, 2013; Smith, 1995; Yaftian, 2015). The 

solver may recognize this as an impasse (Savic, 2016), forget the problem for a 

time, and focus on other activities (Yaftian, 2015). The problem is internalized 

in the unconscious mind, which continues to process the information (Yaftian, 

2015). This phase can last from several minutes to several years (Aldous, 2007; 

Liljedhal, 2004). 

In the illumination phase, the sudden feeling of reaching the problem solution 

is often accompanied by a sub-vocal or exuberantly shouted Aha! (Webb et al., 

2018) and hence is known as an Aha! or Eureka experience (Aldous, 2007; 

Liljedahl, 2004, 2005, 2013; Shen et al., 2013; Sriraman, 2009; Weisberg, 2015).  

The fourth and final stage is called verification and involves “examining, 

improving, assessing, validating, writing out, controlling, persuading and lastly 

publishing the new idea” (Yaftian, 2015, p. 2522). The solution is checked and 

further refined (Aldous, 2007; Haylock, 1987). The solver makes the result 

precise, searches for possible extensions through utilization of the result and 

expresses the result in language (Sriraman, 2004). If the verification phase 

indicates that the solution is not suitable, then the solver may go back to an earlier 

stage of the problem solving process (Aldous, 2007).  

Regarding transformative abilities, Dziedziewicz and Karwowski (2015) 

define them as the abilities to transform created imageries. In this paper, our 

definition in the field of mathematics was based on the concept of 

mathematization, which derives from the theory of realistic mathematics (Jupri 

& Drijvers, 2016). Mathematization consists of two distinct types: horizontal and 

vertical (Treffers, 1987). Horizontal mathematization focuses on the process 

leading from the world of life to the world of symbols, whereas vertical 

mathematization refers to the process of moving within the symbolic world 

(Freudenthal, 1991). This study focuses exclusively on horizontal 

mathematization due to the age of the participants, considering that younger 

children concretely experience algebra using concrete and visual objects (Lee et 

al., 2016).  
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Finally, given that originality is the ability to produce creative unique 

imageries (Dziedziewicz & Karwowski, 2015), in this paper we defined 

originality as the “statistical infrequency of the responses in relation to the peer 

group” (Haylock, 1997, p. 71) and the likelihood of holding new and unique ideas 

(Gil et al., 2007). In addition, we assume that originality can manifest in students’ 

mathematical products related to vividness and products related to transformative 

abilities. First, the close relationship between originality and imagination is 

evident in the literature. For example, Egan (2005) states that imagination is the 

source of flexibility and originality of human thinking, while White (1990) 

argues that imagination is tightly connected to invention and originality. In 

addition, originality is evident in the questions individuals pose, the 

representations they use, and the justifications they offer (Sheffield, 2009).  

The goal of the present paper is to empirically examine the structure of 

mathematical imagination. The research question of the study is the following: 

Do the data of the study confirm the structure of the proposed model about 

mathematical imagination?  

 

 

2. Methods 

2.1. Participants 

The participants were 217 sixth-grade primary school students (94 boys, 100 

girls, and 23 students whose gender data was missing). Students were selected 

through convenient sampling and came from 3 urban and 8 rural schools. We 

focused on primary school students because the basics of creative thinking are 

developed at early ages (Leikin & Pitta-Pantazi, 2013). We also decided to 

examine 11-year-old students in the light of related literature. In fact, according 

to Hennesey (2007), second graders are creative and full of enthusiasm for 

learning whereas three years later they become passive learners without curiosity. 

In addition, research data show that 81% of fourth-graders in USA have positive 

attitudes towards mathematics while four years later only 35% of those students 

exhibit the same positive attitudes (U.S. Department of Education & National 

Center for Education Statistics, 2003). Therefore, it seems that the age of 11 years 

is of particular research interest.  

 

2.2. Data Collection  

A mathematical imagination test composed of three parts was administered to 

students. The tasks were designed based on the Conjunctional Model of Creative 

Ability (Dziedziewicz & Karwowski, 2015), according to which imagination is 

the conjunction of vividness, transformative abilities, and originality. Figure 1 

presents an example task for each part of the test. Part A consists of three 
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multiple-solution tasks measuring the vividness of spatial images (Levav-

Waynberg & Leikin, 2012). Part B focuses on the vividness of algebraic images 

through three insight problems (Weisberg, 1995), since seeing is associated with 

having creative insights or ‘Aha!’ moments (Vale & Barbosa, 2018). Insight 

problems require students to pass through the four stages of the creative process 

(preparation, incubation, illumination, and verification) (Wallas, 1926) to reach 

a solution. Lastly, Part C includes three multiple-solution tasks examining 

transformative abilities and focusing on horizontal mathematization 

(Freudenthal, 1991). 

 
Figure 1 

Example tasks of the mathematical imagination test 
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2.3. Scoring Process  

The assessment of the vividness of spatial images was based on students’ 

flexibility scores in the three tasks of Part A (indicators: Flex_VSI_1, 

Flex_VSI_2, Flex_VSI_3), given that imagination is the source of flexibility of 

human thinking (Egan, 2005). Flexibility pertains to the generation of divergent 

strategies or solutions in a task (Leikin, 2009). Specifically, we tracked all 

students’ answers in each task and classified them into categories and sub-

categories by taking into account the diversity of their answers and their cognitive 

complexity. For instance, the categories established for the first task of part A 

were: ‘counting’, ‘serial strategies’, ‘similar groups and remainder’, ‘subitizing’. 

The ‘serial strategies’ category was sub-divided into 9 sub-categories: vertical 

series, horizontal series, diagonal series, zig-zag pattern, combination of two 

‘serial strategies’, combination of a ‘serial strategy’ with a ‘similar group’ 

strategy, horizontal groups, vertical groups (of 5 or 8), vertical groups (of 5 or 8) 

and then subtraction. Students’ flexibility was evaluated using the scoring 

scheme in Table 1, which draws on the scoring scheme proposed by Leikin 

(2013). 

Figure 2 presents an example of a student’s answer given for the first task of 

part A. Specifically, 1 point was given for the first correct solution. The second 

solution was given 1 point, as it belongs to a category of answers different from 

the answer(s) given previously (serial strategy). The third solution was attributed 

0.1 points respectively, as it belongs to the previous category of answers (serial 

strategy), but to a different sub-category (horizontal series). Finally, 1 point was 

given for the fourth solution, as it belongs to a category of answers different from 

the answer(s) given previously (‘subitizing’ category). Overall, the student’s total 

score was 3.1 points. 

 
Table 1 

Scoring scheme for evaluating flexibility 
 

 Points per solution 

For the first correct solution 1 

which belongs to a category of answers different from the 

answer(s) given previously  
1 

which belongs to one of the previous categories of 

answers, but to a different sub-category  
0.1 

which belongs to one of the previously used categories and 

sub-categories of answers  
0 

Incorrect or no answer  0 
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Figure 2  

Indicative answers given to the first task of part A in the mathematical imagination test 
 

1st solution: ‘Similar groups’ category        2nd solution: Serial strategies 

                      Groups of three                                  Zig-zag pattern 

 

          3rd solution: Serial strategies                   4th solution: Subitizing  

                   Horizontal series                                       Dice pattern 

 

Students’ vividness of algebraic images was assessed on the basis of the 

correctness of their answers in the insight problems of Part B (indicators: VAI_1, 

VAI_2, VAI_3). In these insight problems, students should pass through the four 

stages of creative process (preparation, incubation, illumination, and verification) 

(Wallas, 1926) to reach the correct solution. In order to ascertain whether students 

had an ‘Aha!’ experience, while solving the three insight problems or not, we 

considered both the correctness of the answer and the justifications provided. It 

is worth mentioning that we purposefully used problems with solutions for which 

only one constraint needs to be relaxed, as those problems facilitate the 

examination of Aha! experiences (Danek & Wiley, 2017). Each correct answer 

and each correct justification were given 1 point respectively. Yet, half points 

were given to partially correct answers and justifications. 

With respect to students’ transformative abilities, for each student, we 

calculated flexibility scores in the three tasks of Part C (indicators: Flex_TA_1, 

Flex_TA_2, Flex_TA_3). In short, we established categories and sub-categories 

of students’ responses. Students’ responses in the first task of Part C were 

grouped into five categories: 1) obvious answers, 2) comparison of children, 3) 

sum of children, 4) fractions-percentages-ratios and 5) adding or extending 

assumptions. For instance, category 3 was analyzed into three sub-categories: 
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total number of students for a single activity, total number of boys or girls who 

prefer 2 or 3 activities, and total number of boys or girls or children. Flexibility 

scores for each task were calculated, according to the scoring scheme shown in 

Table 1.  

For example, the questions posed by a student were as follows: How many 

boys like swimming? (obvious answers), How many girls like board games? 

(obvious answers), How many kids like football? (sum of children), How many 

more boys like football than girls? (comparison of children). In fact, 1 point was 

given for the first correct solution. The second solution was attributed 0 points, 

as it belongs to the previous category and sub-category of answers. Furthermore, 

1 point was given to the third and fourth answer respectively because they both 

belong to a category of answers different from the answer(s) given previously. 

Overall, student’s total score was 3 points.  

Originality was assessed by taking under consideration students’ responses in the 

multiple-solution tasks of the imagination test: the tasks of Part A on the 

vividness of spatial images (indicators: Or_VSI_1, Or_VSI_2, Or_VSI_3) and 

tasks of Part C on transformative abilities (Or_TA_1, Or_TA_2, Or_TA_3). 

While assessing originality, ‘relative’ and ‘absolute’ assessment of originality 

were combined (Leikin, 2009; 2013). Therefore, the assessment of originality 

was based on two criteria: statistical infrequency of the responses in relation to 

the peer group and cognitive complexity of the category to which answers belong. 

Statistical infrequency refers to the relative assessment of originality. First, we 

divided the frequency of each correct answer by the total number of correct 

answers provided by the students in the population under study to calculate the 

percentage frequency of that answer. Each correct answer was given a score 

between zero and one, according to a scoring rubric. The rarest correct solution 

received the highest score. As for cognitive complexity, it refers to absolute 

originality, which is based on the level of insight embedded in the solution 

process used by students (Ervynck, 1991). Each category of answers in each task 

was assigned to one of the following three levels of cognitive complexity: low 

level (0 points given), moderate level (1 point given), and high level (2 points 

given). Originality scores were calculated as the sum of the score allocated for 

the statistical infrequency of each response and the score allocated for its 

cognitive complexity.  

The process of scoring the originality of students’ answers presented in 

Figure 2 will be explained below. As mentioned before, the evaluation of 

originality was based on two criteria: statistical infrequency of the responses in 

relation to the peer group and cognitive complexity of the category to which 

answers belong. ‘Groups of three’ solution was given 0.2 points for statistical 

infrequency and 1 point for cognitive complexity. ‘Zig zag pattern’ solution was 

given 0.6 points for statistical infrequency and 1 point for cognitive complexity. 
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‘Horizontal series’ solution was given 0.2 points for statistical infrequency and 1 

point for cognitive complexity. Finally, ‘Dice pattern’ solution was awarded 0.8 

points for statistical infrequency and 2 points for cognitive complexity. In total, 

the student’s originality score in that task was 6.8 points. 

 

2.4. Reliability and Validity of the Instruments 

As for the reliability of the instrument, internal consistency was found to be 

moderate to high (Cronbach α=.85) (Murphy & Davidshofer, 2001). The content 

validity of the instruments was measured as well, by using the Content Validity 

Index (CVI). Item-level CVI (I-CVI) refers to the content validity of individual 

items and scale-level CVI (S-CVI) reflects the content validity of the overall scale 

(Polit & Beck, 2006).  

Regarding item-level CVI (I-CVI), we asked four experts (two mathematics 

primary teachers and two mathematics education scholars) to rate each item of 

the instruments in terms of its relevance to the underlying construct. Lynn (1986) 

suggested that the ideal number of experts is three to ten. The experts used a 4-

point scale to avoid having a neutral and ambivalent midpoint (Lynn, 1986), 

where 1 indicated not relevant, 2 for somewhat relevant, 3 for quite relevant, and 

4 for highly relevant (Davis, 1992). Then, for each item, the I-CVI was computed 

as the number of experts giving a rating of either 3 or 4 divided by the total 

number of experts (Polit & Beck, 2006). When experts are fewer than five, only 

an I-CVI of 1.00 is acceptable (Lynn, 1986). In other words, all experts must 

agree on the content validity of each item. All I-CVIs had values of 1.00, showing 

satisfactory content relevance. 

The scale-level CVI (S-CVI) is “the proportion of items on an instrument that 

achieved a rating of 3 or 4 by the content experts’’ (Beck & Gable, 2001, p. 209). 

An interpretation of the S-CVI definition is S-CVI/Ave. To calculate S-CVI/Ave, 

we computed the average of the I-CVIs in each scale. S-CVI/Ave values above 

.90 are regarded as satisfactory (Waltz et al., 2005). All S-CVIs had values of 

1.00, illustrating acceptable content relevance.   

 

2.5. Data Analysis 

Descriptive statistics were calculated using the SPSS software package, while 

PLS-Structural Equation Modeling was conducted using the SmartPLS software. 

The purpose of PLS-SEM is to predict and explain the variance of a target 

construct (Sarstedt et al., 2017). Specifically, we examined a reflective 

measurement model. In a reflective measurement model, latent variables are 

measured using reflective (effect) indicators (Diamantopoulos & Siguaw, 2006).  

This method was chosen for two reasons. First, when performing PLS-SEM, 

researchers benefit from the method’s greater statistical power compared to 



 Irakleous P., Christou C. and Pitta-Pantazi D. • Unpacking mathematical imagination  

 
19 

factor-based SEM and, hence, the PLS-SEM method is more likely to identify an 

effect as significant when it is indeed (Sarstedt et al., 2017). Second, in contrast 

to factor-based SEM, when applying the PLS-SEM algorithm, the overall number 

of model parameters can be extremely high in relation to the sample size as long 

as each partial regression relationship draws on a sufficient number of 

observations (Sarstedt et al., 2017).  

In order to evaluate this type of model, indicators’ reliability, internal 

consistency reliability, convergent validity and discriminant validity should be 

considered (Sarstedt et al., 2017). Indicators’ reliability is assessed using 

indicators’ loadings. Loadings above .70 reveal that the indicator has an 

acceptable degree of reliability (Sarstedt et al., 2017). Composite reliability ρc 

and Cronbach α are used for examining the constructs’ internal consistency. A 

value of .60 is considered as a threshold for both reliability ρc and Cronbach α 

(Hair et al., 2017). However, values above .95 imply that the items are almost 

identical. Convergent validity is examined by the average variance extracted 

(AVE) across all items associated with a particular construct. An acceptable 

benchmark of AVE is .50 or higher, meaning that, on average, the construct 

explains (more than) 50% of the variance of its items (Sarstedt et al., 2017). 

Finally, discriminant validity examination shows the extent to which a construct 

is empirically distinct from other constructs (Sarstedt et al., 2017). Discriminant 

validity is evaluated based on the Fornell-Larcker (1981) criterion and the cross-

loadings (Chin, 1998), which is also known as ‘item-level discriminant validity’ 

(Henseler et al., 2015). The Fornell-Larcker (1981) criterion recommends that 

discriminant validity of a construct is achieved when the square root of the AVE 

is greater than the correlation between the constructs of the model. Regarding the 

item-level discriminant validity, each indicator loading should be greater than all 

of its cross-loadings (Chin, 1998).  

 

 

3. Findings 

This section begins with a descriptive analysis of the data obtained and then 

presents the results emerged from the evaluation of the reflective measurement 

model measuring imagination in mathematics. Table 2 presents the descriptive 

statistics of the mathematical imagination test.  

All variables were converted to a scale of 0-1, to allow comparisons among 

students’ scores in each variable. The mean scores were between .17 and .62. 

Originality in transformative abilities task 2 had the lowest mean score. This task 

asked students to pose various problems which could be answered by a given 

mathematical sentence of additive structure. The highest mean score was 

achieved in task 2 on vividness of algebraic images. This task called students to 
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find the arithmetic values represented by symbols in a given addition. 

Regarding skewness and kurtosis, in large samples it is appropriate to focus 

on the shape of the distribution instead of using formal inference tests 

(Tabachnick & Fidell, 2014). Because the standard errors for both skewness and 

kurtosis decrease with larger N, the null hypothesis is likely to be rejected with 

large samples when there are only minor deviations from normality. Based on 

Table 2, the absolute values of skewness indices were below one, except for 

originality in transformative abilities task 2. In addition, the absolute values of 

kurtosis indices of all variables were lower than 2 and in some cases close to zero. 

An exception was observed in the kurtosis index of originality in transformative 

abilities task 2. These indices recommend that the measure of mathematical 

imagination was normally distributed. 

 
Table 2 

Descriptive statistics of the mathematical imagination test  

 

 

Figure 3 shows model parameter estimates (indicators’ loadings, constructs’ 

loadings, and variance explained by the constructs). Overall, all indicators are 

Indicators Mean 
Standard 

Deviation 
Range Skewness Kurtosis 

Vividness of 

Spatial Images 

(VSI) 

Task 1 Flexibility .60 .26 1 -.32 -.33 

Task 2 Flexibility .59 .19 1 -.13 -.09 

Task 3 Flexibility .48 .24 1 .06 -.95 

Vividness of 

Algebraic 

Images (VAI) 

Task 1 Correctness .44 .40 1 .18 -1.48 

Task 2 Correctness .62 .32 1 -.15 -1.12 

Task 3 Correctness .51 .40 1 .03 -1.54 

Transformative 

Abilities (TA) 

Task 1 Flexibility .45 .21 1 -.21 -.25 

Task 2 Flexibility .26 .25 1 .48 -.82 

Task 3 Flexibility .50 .25 1 -.22 -.33 

Originality 

VSI 1 Originality .43 .23 1 -.06 -.61 

VSI 2 Originality .27 .18 1 .98 1.51 

VSI 3 Originality .35 .27 1 .47 -1.07 

TA 1 Originality .34 .18 1 -.19 -.25 

TA 2 Originality .17 .20 1 1.46 2.21 

TA 3 Originality .34 .17 1 -.42 .39 
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suitable measures of the relevant constructs. As for indicators’ reliability, all 

indicators with loadings below .70 were removed. All remaining indicators have 

positive, high, and significant loadings (above .70). Two spatial images’ 

indicators and one algebraic images’ indicators load strongly on the factor of 

vividness. In addition, all three transformative abilities’ indicators exhibit 

satisfactory loadings on transformative abilities. Finally, only algebraic images’ 

indicators have adequate loadings on the factor of originality, while spatial 

images’ indicators have lower loadings.  

Furthermore, the positive, high, and statistically significant loadings of the 

first-order factors, namely vividness (λ=.79, R2=.63), transformative abilities 

(λ=.89, R2=.78) and originality (λ=.91, R2=.83), indicated that these abilities 

constitute a second-order construct, that of mathematical imagination. Among 

the three abilities, the most reliable ability for measuring imagination in 

mathematics is originality, due to its higher loading.  

 
Figure 3  

The proposed model capturing imagination in mathematics 

 

Note: The first number represents indicators’ loadings and numbers in parentheses 

represent the items’ variance explained by the constructs (R2). 

 

Table 3 summarizes the evaluation criteria outcomes (Composite reliability ρc, 

Cronbach α, AVE and Q2). Regarding the constructs’ internal consistency, 
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composite reliability ρc and Cronbach α met the threshold of .60, except of 

Cronbach α of vividness which is slightly lower than .60. A possible 

interpretation is that two spatial images’ indicators as well as one algebraic 

images’ indicators load strongly on the factor of vividness. Further, all AVE 

values were above .50. Therefore, AVE values across all items associated with a 

particular construct provided evidence for the construct’s convergent validity. 

Discriminant validity is regarded as acceptable for all constructs of the model. 

Concerning the Fornell-Larcker (1981) criterion, the square roots of the AVE of 

all constructs were greater than the correlations between the constructs of the 

model. Table 4 illustrates the correlation coefficients of the three constructs of 

the mathematical imagination model. It is revealed that all correlations among 

the three constructs are positive and statistically significant. The correlation 

between vividness and transformative abilities and correlation between vividness 

and originality are moderate, while the correlation between originality and 

transformative abilities is considered as substantial (Best & Kahn, 2007, as cited 

in Wonu et al., 2018). Regarding the item-level discriminant validity, each 

indicator loading was greater than all of its cross-loadings.  

 

 
Table 3 

Evaluation criteria outcomes of the reflective measurement model defining imagination 

in mathematics 
 

Criterion Vividness 
Transf. 

Abilities 
Originality Imagination 

Composite Reliability 

ρc 
.78 .79 .85 .87 

Cronbach α .57 .60 .74 .84 

Average Variance 

Extracted (AVE) 
.54 .56 .66 .75 
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Table 4 

Correlations among the constructs of the mathematics imagination model  
 

Construct Vividness Transformative Abilities Originality 

Vividness 1 .56* .57* 

Transformative 

Abilities 
.56* 1 .73* 

Originality .57* .73* 1 

Note: *Statistically significant at α=.05  

 

 

4. Discussion 

Imagination is a complex construct (Egan, 1992; van Alphen, 2011) with a vague 

definition (Ho et al., 2013). At the same time, empirical studies revolving around 

imagination are scarce (Egan, 1992), despite the need raised by researchers to 

develop theoretical models that describe imagination (Abrahamson, 2006; 

Dziedziewicz & Karwowski, 2015; Egan, 1992). Therefore, aiming to bridge this 

gap, the present paper attempts to empirically investigate the construct of 

imagination in mathematics. To fulfill this goal, a proposed model was 

established, by adapting the Conjunctional Model of Creative Imaging Ability 

(Dziedziewicz & Karwowski, 2015) originating from psychology to the field of 

mathematics.  

The data of the study empirically support the structure of the proposed model, 

since the proposed model meets the guidelines for evaluating of PLS-SEM 

results. In sum, the findings illustrate that mathematical imagination is a 

multidimensional construct comprising three abilities: vividness, transformative 

abilities and originality. Moreover, the study indicates that visualization does not 

relate only to geometry and trigonometry (Presmeg, 1997), but is important for 

algebra as well (Yerushalmy et al., 1999). Besides, it was found that only 

algebraic images’ indicators have adequate loadings on the factor of originality, 

while spatial images’ indicators have lower loadings. A possible interpretation is 

that children’s originality in spatial images’ tasks was influenced by another 

factor, such as their cognitive style (Blazhenkova et al., 2011). Finally, the high 

originality on imagination empirically corroborates the arguments that loading of 

originality is the most reliable index to measure creativity (Ervynck, 1991) and 

imagination is strongly related to invention and originality (White, 1990).  

A range of methodological limitations can be identified in the present paper, 
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which seem to pose fruitful directions for further exploration. First, keeping in 

mind that the study has only examined sixth-graders selected through convenient 

sampling, further studies focusing on randomly selected students of a broader age 

range are highly needed. What is also notable is that the study took place at a 

single point in time. Longitudinal studies can go a step further by investigating 

whether the structure of the proposed model remains fairly stable over time. 

Focusing on data analysis, it is useful to explore whether simpler models can 

describe the structure of imagination in mathematics, by collecting data from a 

larger sample. Kline (2013) asserts that the goal of structural equation modeling 

is to select a model that fits the data and is as simple as possible.  

The contribution of the current paper is threefold. From a theoretical 

perspective, the study proposes and empirically examines a model for clarifying 

and gauging imagination in mathematics, considering the need of developing 

theoretical models on imagination (Abrahamson, 2006; Dziedziewicz & 

Karwowski, 2015; Egan, 1992). This model bridges the research of creativity and 

imagination (Jankowska & Karwowski, 2015). In sum, this study empirically 

confirmed that imagination is a multidimensional conceptual construct consisting 

of three abilities: vividness, transformative abilities, and originality.  

On a methodological level, the study extends the pertinent literature by 

designing an instrument for assessing imagination in the field of mathematics. 

This instrument is theory-guided since its design is based on the components of 

the ‘Conjunctional Model of Creative Imaging Ability’. In addition, the 

instrument is analytical because it clearly defines all three components of 

imagination. Finally, the instrument is considered suitable, because its structure 

was confirmed through empirical data. This instrument can be administered 

either for research or instructional purposes.  

From a practical point of view, teacher education programs do not place 

particular emphasis on how to engage the imagination and also many teachers do 

not feel confident to fuel students’ imagination (Egan & Judson, 2016). 

Therefore, the study can advance teachers’ understanding of what mathematical 

imagination entails and can offer a tool for measuring imagination which, in turn, 

can aid them in monitoring and enhancing students’ mathematical imagination.  

 

 

 

References 

Abrahamson, D. (2006). The three M’s: Imagination, embodiment, and mathematics. 

Paper presented at the annual meeting of the Jean Piaget Society, June, 2006, 

Baltimore, MD. 



 Irakleous P., Christou C. and Pitta-Pantazi D. • Unpacking mathematical imagination  

 
25 

Aldous, C.R. (2007). Creativity, problem solving and innovative science: Insights from 

history, cognitive psychology and neuroscience. International Education Journal, 

8(2), 176–186. 

Beck, C.T., & Gable, R.K. (2001). Ensuring content validity: An illustration of the 

process. Journal of Nursing Measurement, 9(2), 201–215. https://doi:10.1891/1061-

3749.9.2.201 

Blazhenkova, O., Becker, M., & Kozhevnikov, M. (2011). Object–spatial imagery and 

verbal cognitive styles in children and adolescents: Developmental trajectories in 

relation to ability. Learning and Individual Differences, 21(3), 281–287. 

https://doi:10.1016/j.lindif.2010.11.012 

Chin, W.W. (1998). The partial least squares approach for structural equation modeling. 

In G.A. Macoulides (Ed.), Modern methods for business research (pp. 295–336). 

Lawrence Erlbaum Associates. 

Christou, C. (2017). Creativity and imagination in mathematics. In D. Pitta-Pantazi 

(Ed.), Proceedings of the 10th International Conference of Mathematical Creativity 

and Giftedness (pp. 17–24). Nicosia, Cyprus: Department of Education, University 

of Cyprus.  

Danek, A.., & Wiley, J. (2017). What about false insights? Deconstructing the Aha! 

experience along its multiple dimensions for correct and incorrect solutions 

separately. Frontiers in Psychology, 7(2077). https://doi:10.3389/fpsyg.2016.02077  

Davis, L.L. (1992). Instrument review: Getting the most from your panel of experts. 

Applied Nursing Research, 5(4), 194–197. https://doi:10.1016/S0897-

1897(05)80008-4 

Diamantopoulos, A., & Siguaw, J.A. (2006). Formative versus reflective indicators in 

organizational measure development: A comparison and empirical illustration. 

British Journal of Management, 17(4), 263–282. https://doi:10.1111/j.1467-

8551.2006.00500.x 

Dziedziewicz, D., & Karwowski, M. (2015). Development of children’s creative visual 

imagination: A theoretical model and enhancement programmes, Education 3–13, 

43(4), 382–392. https://doi:10.1080/03004279.2015.1020646 

Eckhoff, A., & Urbach, J. (2008). Understanding imaginative thinking during childhood: 

Sociocultural conceptions of creativity and imaginative thought. Early Childhood 

Education Journal, 36(2), 179–185. https://doi: 10643-008-0261-4 

Egan, K. (1992). Imagination in teaching and learning: Ages 8 to 15. Routledge. 

Egan, K. (2005). An imaginative approach to teaching. Jossey-Bass.  

Egan, K. (2015). Preface to the first edition. In K. Egan, G. Juddon, & K. Madej (Eds.). 

Engaging imagination and developing creativity in education (pp. ix-x). Cambridge 

Scholars Publishing. 

Egan, K., & Judson, J. (2016). Imagination and the engaged learner: Cognitive tools for 

the classroom. Teachers College Press. 

Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical 

thinking (pp. 42–53). Kluwer. 

https://dx.doi.org/10.3389%2Ffpsyg.2016.02077


 La matematica e la sua didattica • Anno 32, n. 1, 2024, 9-29 

 

 

26 

Fornell, C. G., & Larcker, D.F. (1981). Evaluating structural equation models with 

unobservable variables and measurement error. Journal of Marketing Research, 

18(1), 39–50. 

Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Springer 

Science & Business Media. 

Gil, E., Ben-Zvi, D., & Apel, N. (2007). What is hidden beyond the data? Helping young 

students to reason and argue about some wider universe. In D. Pratt & J. Ainley 

(Eds.), Proceedings of the Fifth International Research Forum on Statistical 

Reasoning, Thinking and Literacy: Reasoning about Statistical Inference: Innovative 

Ways of Connecting Chance and Data (pp. 1–26). University of Warwick. Retrieved 

from http://srtl.stat.auckland.ac.nz/srtl5/presentations 

Hair, J.F., Hult, G.T.M., Ringle, C.M., & Sarstedt, M. (2017). A primer on partial least 

squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.  

Haylock, D.W. (1987). A framework for assessing mathematical creativity in school 

children. Educational Studies in Mathematics, 18(1), 59–74.  

Haylock, D.W. (1997). Recognizing mathematical creativity in school children. ZDM – 

Mathematics Education, 29(3), 68–74. 

Hennesey, B.A. (2007). Creativity and motivation in the classroom: A social psychology 

and multi-cultural perspective. In A.G. Tan (Ed.), Creativity: A handbook for 

teachers (pp. 27–45). World Scientific.  

Henseler, J., Ringle, C.M., & Sarstedt, M. (2015). A new criterion for assessing 

discriminant validity in variance-based structural equation modeling. Journal of the 

Academy of Marketing Science, 43(1), 115–135. https://doi:10.1007/s11747-014-

0403-8 

Ho, H.C., Wang, C.C., & Cheng, Y.Y. (2013). Analysis of the scientific imagination 

process. Thinking Skills and Creativity, 10, 68–78. 

https://doi:10.1016/j.tsc.2013.04.003 

Jagals, D., & van der Walt, M. (2018). Metacognitive awareness and visualisation in the 

imagination: The case of the invisible circles. Pythagoras, 39(1), 1–10. 

https://doi:10.4102/pythagoras.v39i1.396 

Jankowska, D.M., & Karwowski, M. (2015). Measuring creative imagery abilities. 

Frontiers in Psychology, 6, 1591. https://doi:10.3389/fpsyg.2015.01591 

Jupri, A., & Drijvers, P.H.M. (2016). Student difficulties in mathematizing word 

problems in algebra. Eurasia Journal of Mathematics, Science and Technology 

Education, 12(9), 2481–2502. https://doi:10.12973/eurasia.2016.1299a 

Kline, R. B. (2013). Exploratory and confirmatory factor analysis. In Y. Petscher & C. 

Schatschneider (Eds.), Applied quantitative analysis in the social sciences (pp. 171–

207). Routledge. 

Lee, J., Collins, D., & Melton, J. (2016). What does algebra look like in early childhood? 

Childhood Education, 92(4), 305–310. https://doi:10.1080/00094056.2016.1208009  

Leikin, R. (2009). Bridging research and theory in mathematics education with research 

and theory in creativity and giftedness. In R. Leikin, A. Berman, & B. Koichu (Eds.), 

Creativity in mathematics and the education of gifted students (pp. 385–411). Sense 

Publisher. 

https://doi.org/10.1016/j.tsc.2013.04.003
https://dx.doi.org/10.4102/pythagoras.v39i1.396


 Irakleous P., Christou C. and Pitta-Pantazi D. • Unpacking mathematical imagination  

 
27 

Leikin, R. (2013). Evaluating mathematical creativity: The interplay between 

multiplicity and insight. Psychological Test and Assessment Modeling, 55(4), 385–

400. 

Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state 

of the art. ZDM–Mathematics Education, 45(2), 159–166. 

https://doi.org/10.1007/s11858-012-0459-1 

Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in 

developing knowledge and creativity in geometry. Journal of Mathematical 

Behavior, 31(1), 73–90. https://doi:10.1016/j.jmathb.2011.11.001 

Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the 

beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 

13(1), 17–32. https://doi:10.1080/14794802.2011.550715 

Liljedahl, P. (2004). The Aha! experience: Mathematical contexts, pedagogical 

implications, Unpublished doctoral dissertation, Simon Fraser University, Burnaby, 

British Columbia, Canada.   

Liljedahl, P. (2005). Mathematical discovery and affect: The effect of Aha! experiences 

on undergraduate mathematics students. International Journal of Mathematical 

Education in Science and Technology, 36(2–3), 219–234. 

https://doi:10.1080/00207390412331316997 

Liljedahl, P. (2013). Illumination: An affective experience? ZDM–The International 

Journal on Mathematics Education, 45(2), 253–265. https://doi:10.1007/s11858-

012-0473-3 

Lindstrand, J. (2010). Educating the imagination: Fostering compassionate empathy 

through art and media, Master’s thesis, McGill University, Canada.  

Lothane, Z. (2007). Imagination as reciprocal process and its role in the psychoanalytic 

situation. International Forum of Psychoanalysis, 16(3), 152–163. 

https://doi:10.1080/08037060701278636 

Lynn, M.R. (1986). Determination and quantification of content validity. Nursing 

Research, 35(6), 382–385. https://doi:10.1097/00006199-198611000-00017 

Macknight, V.S. (2009). Teaching imagination (PhD thesis, The University of 

Melbourne). Retrieved from http://hdl.handle.net/11343/35286 

Murphy, K. R., & Davidshofer, C.O. (2001). Psychological testing principles and 

applications (5th ed.). Prentice Hall. 

Pelaprat, E., & Cole, M. (2011). “Minding the gap”: Imagination, creativity and human 

cognition. Integrative Psychological and Behavioral Science, 45(4), 397–418. 

https://doi:10.1007/s12124-011-9176-5 

Polit, D.F., & Beck, C.T. (2006). The content validity index: are you sure you know 

what’s being reported? Critique and recommendations. Research in Nursing & 

Health, 29(5), 489–497. https://doi:10.1002/nur.20147 

Pound, L., & Lee, T. (2015). Teaching mathematics creatively. Routledge. 

Presmeg, N.C. (1986). Visualisation in high school mathematics. For the learning of 

mathematics, 6(3), 42–46. 

https://doi.org/10.1007/s11858-012-0459-1
https://doi.org/10.1080/00207390412331316997
http://hdl.handle.net/11343/35286


 La matematica e la sua didattica • Anno 32, n. 1, 2024, 9-29 

 

 

28 

Presmeg, N.C. (1997). Generalization using imagery in mathematics. In L.D. English 

(Ed.), Mathematical reasoning: Analogies, metaphors and images (pp. 299–312). 

Erlbaum. 

Ren, F., Li, X., Zhang, H., & Wang, L. (2012). Progression of Chinese students’ creative 

imagination from elementary through high school. International Journal of Science 

Education, 34(13), 2043–2059. https://doi:10.1080/09500693.2012.709334 

Sarstedt, M., Ringle, C.M., & Hair, J.F. (2017). Partial least squares structural equation 

modeling. In C. Homburg, M. Klarmann, & Vomber (Eds.), Handbook of market 

research (pp. 1–40). Springer International Publishing. https://doi:10.1007/978-3-

319-05542-8_15-1 

Savic, M. (2016). Mathematical problem-solving via Wallas’ four stages of creativity: 

Implications for the undergraduate classroom. The Mathematics Enthusiast, 13(3), 

255–278. https://doi.org/10.54870/1551-3440.1377 

Seelig, T. (2012). inGenius: A Crash course on creativity. Harper One. 

Sheffield, L.J. (2009). Developing mathematical creativity—Questions may be the 

answer. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and 

the education of gifted students (pp. 87–100). Sense Publishers. 

Shen, W., Liu, C., Zhang, X., Zhao, X., Zhang, J., Yuan, Y., & Chen, Y. (2013). Right 

hemispheric dominance of creative insight: An event-related potential study. 

Creativity Research Journal, 25(1), 48–58. 

https://doi:10.1080/10400419.2013.752195 

Smith, S.M. (1995). Fixation, incubation, and insight in memory and creative thinking. 

In S.M. Smith, T.B. Ward, & R.A. Finke (Eds.), The creative cognition approach 

(pp. 135–156). MIT Press.  

Smith, M., & Mathur, R. (2009). Children’s imagination and fantasy: Implications for 

development, education, and classroom activities. Research in the Schools, 16(1), 

52–63. 

Sriraman, B. (2004). The characteristics of mathematical creativity. Mathematics 

Educator, 14(1), 19–34.  

Sriraman, B. (2009). Aha! experiences. In B. Kerr (Ed.), Encyclopedia of giftedness, 

creativity and talent (Vol. 1, pp. 37–39). Sage Publications. 

Tabachnick, B.G., & Fidell, L.S. (2014), Using multivariate statistics: Pearson new 

international edition (6th ed.). Pearson Education Limited. 

Treffers, A. (1987). Three dimensions: A model of goal and theory description in 

mathematics instruction - The Wiskobas project. Kluwer Academic Publishers. 

U.S. Department of Education, National Center for Education Statistics. (2003). 

Comparative indicators of education in the United States and other G-8 countries: 

2002 (NCES Publication No. 2003–26). Retrieved from 

https://nces.ed.gov/pubs2003/2003026.pdf  

Vale, I., & Barbosa, A. (2018). Mathematical problems: The advantages of visual 

strategies. Journal of the European Teacher Education Network, 13, 23–33. 

van Alphen, P. (2011). Imagination as a transformative tool in primary school education. 

RoSE - Research on Steiner Education, 2(2), 16–34. 

Wallas, G. (1926). The art of thought. Jonathan Cape. 

https://doi.org/10.1080/09500693.2012.709334
https://nces.ed.gov/pubs2003/2003026.pdf


 Irakleous P., Christou C. and Pitta-Pantazi D. • Unpacking mathematical imagination  

 
29 

Waltz, C.F., Strickland, O.L., & Lenz, E.R. (2005). Measurement in nursing and health 

research (3rd ed.). Springer Publishing Co. 

Webb, M. E., Little, D. R., & Cropper, S.J. (2018). Once more with feeling: Normative 

data for the aha experience in insight and noninsight problems. Behavior Research 

Methods, 50(5), 2035–2056. https://doi:10.3758/s13428-017-0972-9 

Weisberg, R.W. (1995). Prolegomena to theories of insight in problem solving: A 

taxonomy of problems. In R.J. Sternberg & J.E. Davidson (Eds.), The nature of 

insight (pp. 157–196). MIT Press.  

Weisberg, R.W. (2015). Toward an integrated theory of insight in problem solving. 

Thinking & Reasoning, 21(1), 5–39. https://doi:10.1080/13546783.2014.886625 

White, A.R. (1990). The language of imagination. Blackwell.  

Wonu, N., Victor-Edema, U.A., & Ndimele, S.C. (2018). Test of significance of 

correlation coefficient in science and educational research. International Journal of 

Mathematics and Statistics Studies, 9(2), 53–68. 

Wu, J.J., & Albanese, D.L. (2013). Imagination and creativity: Wellsprings and streams 

of education–The Taiwan experience. Educational Psychology, 33(5), 561–581. 

https://doi:10.1080/01443410.2013.813689 

Yaftian, N. (2015). The outlook of the mathematicians’ creative processes. Procedia-

Social and Behavioral Sciences, 191, 2519–2525. 

https://doi:10.1016/j.sbspro.2015.04.617 

Yerushalmy, M., Sternberg, B., & Gilead, S. (1999). Visualization as a vehicle for 

meaningful problem solving in algebra. In O. Zaslavsky (Ed.) Proceedings of the 

23rd PME Conference (Vol. 1., pp. 197–211). PME.  


